#### Física Estatística das Dinâmicas Sociais

#### Nuno Crokidakis

Grupo de Sistemas Complexos, IF-UFF

05 de Novembro 2014





1 Introdução

1 Introdução

2 Modelo do Votante

- 1 Introdução
- 2 Modelo do Votante
- 3 Modelo do Votante Majoritário

- 1 Introdução
- 2 Modelo do Votante
- 3 Modelo do Votante Majoritário
- 4 Modelo de Interações por Pares

- 1 Introdução
- 2 Modelo do Votante
- 3 Modelo do Votante Majoritário
- 4 Modelo de Interações por Pares
- 6 Modelo de Sznajd

- 1 Introdução
- 2 Modelo do Votante
- 3 Modelo do Votante Majoritário
- 4 Modelo de Interações por Pares
- **6** Modelo de Sznajd

## Modelos de dinâmicas sociais (socio-física)

- Partículas ⇒ Pessoas, animais, ...
- Sistemas definidos em redes (regulares, complexas, ...)
- Modelos baseados em agentes
- Interações: regras microscópicas
- Emergência de um comportamento coletivo (consenso, linguagem comum, prevalência ou extinção de uma doença...)
- Comportamento de Escala, Leis de Potência ( $y \sim x^a$ ), Transições ordem-desordem, Correlações  $\Rightarrow$  Física Estatística!
- Abordagem: equação mestra, eq. de Langevin, simulações computacionais, ...

# Podemos estudar uma variedade de problemas...

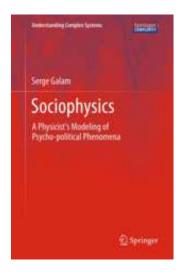
- Dinâmicas de Opinião (eleições, debates, ...)
- Espalhamento de Rumores, Crenças e Doenças
- Mercado Financeiro
- Tráfego de Veículos
- Dinâmica de Linguagens
- Movimento de Pedestres

• ...

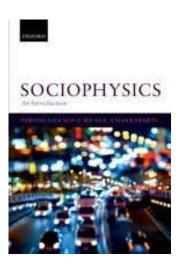
### Relação com a Física Estatística

- A relação destes sistemas com a Física mais tradicional não é somente pela ocorrência de Fenômenos Críticos em ambos. Assim como os modelos da Física Estatística explicam por exemplo como uma coleção de átomos pode exibir o comportamento correlacionado necessário para produzir um ferromagneto, os modelos que representam Fenômenos Sociais pretendem explicar comportamentos interdependentes. A idéia básica da Física Estatística - que o comportamento de um átomo é influenciado pelo comportamento dos outros átomos - é, portanto, semelhante à afirmação das Ciências Sociais de que as decisões de um indivíduo dependem das decisões dos outros; aí que reside a possibilidade de uma estrutura matemática e/ou computacional comum;
- Um discussão interessante sobre esta relação pode ser encontrada no texto de Steven Durlauf, How can statistical mechanics contribute to social science?, PNAS 96, 10582 (1999).

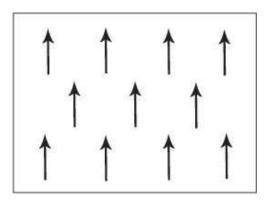
## Área em alta na Física



## Área em alta na Física

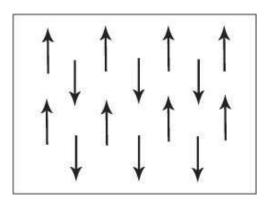


## Ferromagnetismo



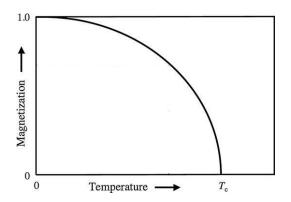
magnetização:  $m=rac{1}{N}\sum_{i=1}^{N}s_i=1\Rightarrow$  ordem

## Paramagnetismo



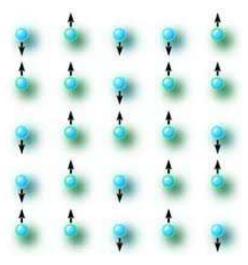
magnetização:  $m=\frac{1}{N}\sum_{i=1}^{N}s_{i}=0\Rightarrow$  desordem

## Magnetização x Temperatura



magnetização: parâmetro de ordem

## Rede Quadrada $L \times L$



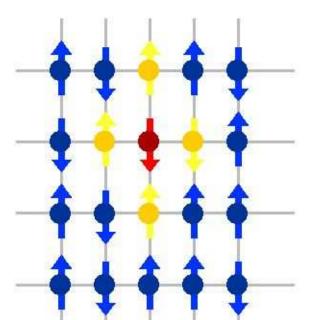
## Modelo Simulado no Computador: Ising

- Spins localizados em sítios de uma rede quadrada, com 2 estados possíveis, s=+1 ou s=-1;
- Sistema a uma dada temperatura T;
- Energia do sistema:

$$E = -J\sum_{\langle i,j\rangle} s_i \, s_j$$

onde a soma se extende sobre os primeiros vizinhos na rede.

### Primeiros Vizinhos na Rede

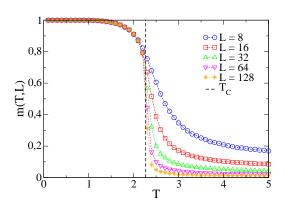


## Algoritmo de Metropolis

- Os spins +1 e −1 são distribuídos aleatoriamente na rede ¹;
- Percorremos todos os sítios da rede em sequência;
- Para um dado spin i, invertemos seu estado, ou seja, fazemos  $s_i \rightarrow -s_i$ ;
- Se esta mudança diminuir a energia E do sistema ( $\Delta \, E < 0$ ), ela é aceita;
- Caso contrário ( $\Delta E > 0$ ), a mudança é aceita com probabilidade  $p = exp(-\Delta E/T)$ .
- Existe uma transição de fase para  $T_c \approx 2.269$ : para  $T < T_c$   $(T > T_c)$  o sistema se encontra ordenado (desordenado).

<sup>&</sup>lt;sup>1</sup>N. Metropolis et. al., J. Chem. Phys. 21, 1087 (1953)

#### Resultado Numérico



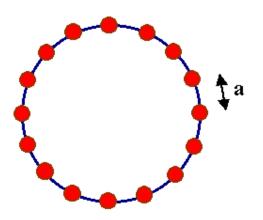
$$\Rightarrow \left\{ \begin{array}{ll} m(T,L) & \sim L^{-a} \\ T_c(L) - T_c & \sim L^{-b} \end{array} \right.$$

## Dinâmicas de Opinião



- 1 Introdução
- 2 Modelo do Votante
- 3 Modelo do Votante Majoritário
- 4 Modelo de Interações por Pares
- **6** Modelo de Sznajd

## Rede regular unidimensional

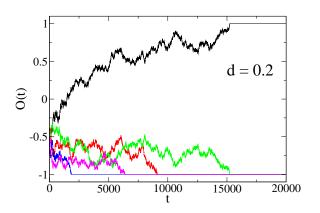


## Regras do modelo

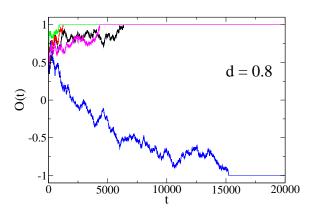
- 2 candidatos A e B, representados por 2 opiniões distintas, s=+1 ou s=-1, respectivamente;
- Configuração inicial: densidade d de opiniões +1 e densidade 1-d de opiniões -1;
- Escolhemos 1 indivíduo ao acaso, e ele assume a opinião (candidato) de um dos seus vizinhos (escolhido aleatoriamente).
- Monitoramos a Opinião média O, isto é, a "magnetização por spin" do sistema,

$$O = \frac{1}{N} \sum_{i=1}^{N} s_i$$

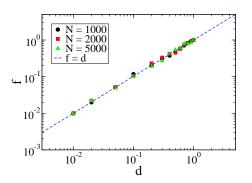
## Evolução da Opinião Média: d=0.2



## Evolução da Opinião Média: d=0.8



## Fração f das simulações com consenso O=1



- $\Rightarrow$  Probabilidade de consenso O=1 é igual à densidade inicial de eleitores do candidato A (s=+1)
- $\Rightarrow$  Não observamos dependência com o tamanho N da rede

#### Conclusões

- Analogias com modelos magnéticos da Física Estatística;
- Representação simplificada de uma dinâmica de opiniões em uma população;
- A população sempre atinge estados de consenso;
- Ausência de transição de fase.

- 1 Introdução
- Modelo do Votante
- 3 Modelo do Votante Majoritário
- 4 Modelo de Interações por Pares
- **6** Modelo de Sznajd

## Modelo do Votante Majoritário

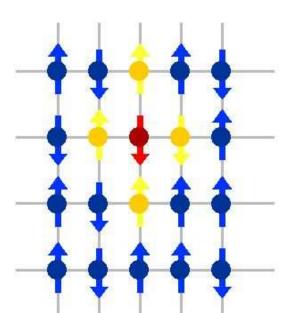
- Rede quadrada com  $N=L^2$  indivíduos com uma entre duas opiniões representadas por varíaveis de Ising,  $\sigma_i = \pm 1 (50\% / 50\%)^2$ ;
- Influência dos primeiros vizinhos no indivíduo do sítio central;
- Com probabilidade q o indivíduo central segue a opinião da minoria dos vizinhos;
- Com probabilidade 1-q o indivíduo central segue a opinião da **maioria** dos vizinhos;
- Em outras palavras, a probabilidade w do indivíduo central mudar de opinião é dada por

$$w = rac{1}{2} \left[ 1 - (1 - 2q) \sigma_i S \left( \sum_{\delta=1}^4 \sigma_{i+\delta} 
ight) 
ight] \; ,$$

onde S(x) = sgn(x) se  $x \neq 0$  e S(0) = 0.

<sup>&</sup>lt;sup>2</sup>M. J. de Oliveira, J. Stat. Phys. **66**, 273 (1992)

## Ilustração da Dinâmica



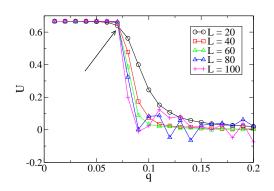
#### Quantidades de Interesse

$$m = \left\langle \frac{1}{N} \left| \sum_{i=1}^{N} o_i \right| \right\rangle$$

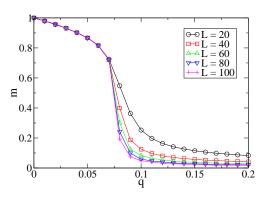
$$U = 1 - \frac{\langle m^4 \rangle}{3 \langle m^2 \rangle^2}$$

onde N é o número de agentes na rede e  $\langle \ \rangle$  representa médias estatísticas.

#### Cumulante de Binder



### Magnetização por spin



$$\Rightarrow \left\{ \begin{array}{ll} m > 0 & \text{para } q < q_c \sim 0.075 \\ m = 0 & \text{para } q \ge q_c \sim 0.075 \end{array} \right.$$

#### Conclusões

- Analogias com Sistemas da Física Estatística;
- Modelo mais sofisticado que o do votante;
- A população só atinge estados de consenso no caso onde não há agentes hesitantes (q = 0);
- Estados democráticos (|m| < 1) são possíveis no modelo;
- Estado desordenado: "empate" entre as 2 opiniões;
- Transição de fase ordem-desordem provocada pela presença de ruído.

- 1 Introdução
- 2 Modelo do Votante
- 3 Modelo do Votante Majoritário
- 4 Modelo de Interações por Pares
- **6** Modelo de Sznajd

#### Regras

- 3 possíveis opiniões: o = +1, -1 ou 0 <sup>3</sup>;
- Todos os agentes podem interagir entre si (campo médio);
- Interações entre pares (i, j) de agentes

$$o_i(t+1) = C_i o_i(t) + \mu_{ij} o_j(t)$$
  
 $o_j(t+1) = C_j o_j(t) + \mu_{ji} o_i(t)$ 

•  $\mu_{ij}$  e  $C_i$  são variáveis aleatórias que seguem as distribuições

$$F(\mu_{ij}) = p \, \delta(\mu_{ij} + 1) + (1 - p) \, \delta(\mu_{ij} - 1)$$

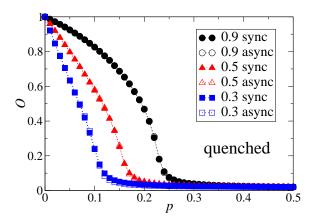
$$G_1(C_i) = q \, \delta(C_i - 1) + (1 - q) \, \delta(C_i - 0)$$

$$G_2(C_i) = q \, \delta(C_i - 1) + (1 - q) \, \delta(C_i + 1)$$

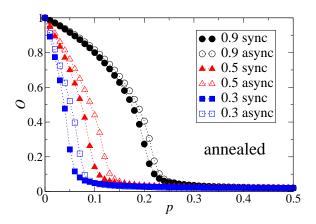
• Opiniões restritas ao intervalo [-1, 1].

<sup>&</sup>lt;sup>3</sup>N. Crokidakis, C. Anteneodo, Phys. Rev. E **86**, 061127 (2012).

# Parâmetro de Ordem: variáveis congeladas



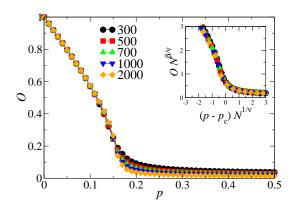
#### Parâmetro de Ordem: variáveis recozidas



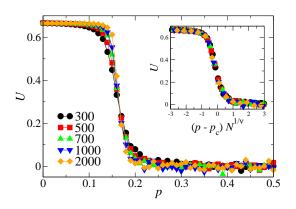
- Técnica usada para obter o ponto crítico e os expoentes da transição (limite termodinâmico  $N \to \infty$ );
- Mesmos expoentes para diferentes valores dos parâmetros (p e q): universalidade;
- Diferentes expoentes para diferentes valores dos parâmetros (p e q):
   quebra de universalidade;
- Equações usuais de escala:

$$O(p,q,N) \sim N^{-eta/
u} \ p_c(q,N) - p_c \sim N^{-1/
u}, \ U(p,q,N) \sim constante$$

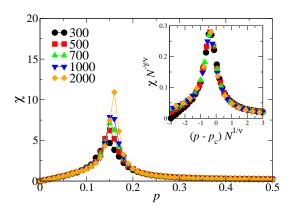
• Exibirei resultados para:  $C_i = 1,0$ ; q = 0.5; atualização sequencial, variáveis congeladas.



$$\Rightarrow$$
  $\textit{p}_{\textit{c}} \approx$  0.167,  $\beta = 1/2$ ,  $\gamma =$  1,  $\nu = 2$ 

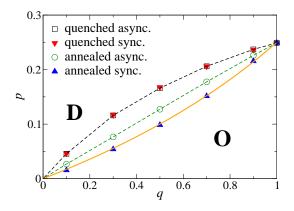


$$\Rightarrow$$
  $p_c \approx$  0.167,  $\beta = 1/2$ ,  $\gamma = 1$ ,  $\nu = 2$ 



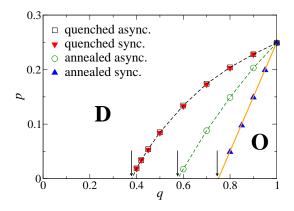
$$\Rightarrow$$
  $p_c \approx$  0.167,  $\beta = 1/2$ ,  $\gamma = 1$ ,  $\nu = 2$ 

### Diagramas de Fases: distribuição diluída



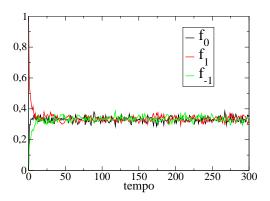
 $\Rightarrow$  universalidade:  $\beta = 1/2$ ,  $\gamma = 1$ ,  $\nu = 2$ 

# Diagramas de Fases: distribuição bimodal



 $\Rightarrow$  universalidade:  $\beta = 1/2$ ,  $\gamma = 1$ ,  $\nu = 2$ 

### Comportamento da Fase Desordenada



- $\Rightarrow$  As frações das 3 opiniões são iguais!
- $\Rightarrow$  p=0.1, q=0.3, atualização sequencial, variáveis temperadas

#### Conclusões

- Analogias com Sistemas da Física Estatística;
- A fase ordenada ("ferromagnética") apresenta o domínio de uma das opiniões extremas, +1 ou −1;
- Estados de consenso (+1 ou -1 para todos os agentes) só ocorrem na ausência de interações negativas (p = 0);
- A fase desordenada ("paramagnética") apresenta a coexistência das 3 opiniões +1, -1 e 0 (1/3 em média para cada);
- Possibilidade de solução analítica no limite de campo médio;
- Semelhanças e Diferenças nos resultados dependendo do tipo de variável aleatória (quenched ou annealed) e do tipo de atualização dos estados (paralela ou sequencial);
- Transição provocada pela presença de interações negativas (p);
- Transição provocada pela heterogeneidade nas convicções dos agentes (q);
- Universalidade na fronteira ordem-desordem (mesmos expoentes críticos:  $\beta = 1/2$ ,  $\gamma = 1$  e  $\nu = 2$ ).

#### Sumário

- 1 Introdução
- 2 Modelo do Votante
- 3 Modelo do Votante Majoritário
- 4 Modelo de Interações por Pares
- 6 Modelo de Sznajd

# Motivação



# Motivação



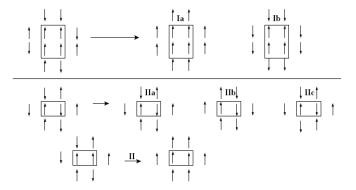
## Modelo de Sznajd

- Os agentes são representados por spins, e possuem 2 estados (opiniões) diferentes, s=+1 e s=-1 <sup>4</sup>;
- Os agentes são posicionados em uma rede quadrada <sup>5</sup>;
- Configuração inicial de opiniões: densidade d de opiniões +1 e densidade 1-d de opiniões -1;
- Interações: grupos de agentes com a mesma opinião convencem seus vizinhos na rede:
- "United we stand, divided well fall".

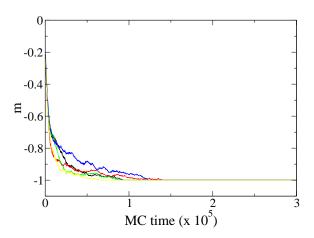
<sup>&</sup>lt;sup>4</sup>K. Sznajd-Weron, J. Sznajd, Int. J. Mod. Phys. C 11, 157 (2000).

<sup>&</sup>lt;sup>5</sup>D. Stauffer et al. IJMPC 11, 1239 (2000)

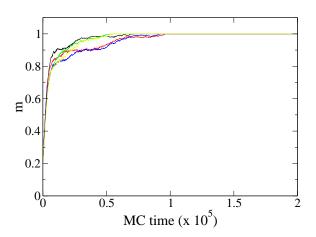
# Algumas regras utilizadas em 2d



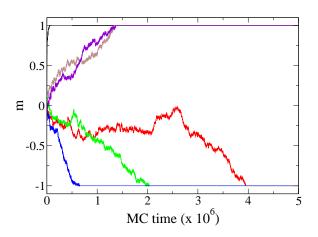
# Evolução da magnetização com o tempo (L = 73, d = 0.4)



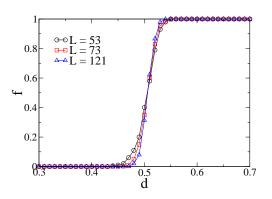
# Evolução da magnetização com o tempo (L = 73, d = 0.6)



# Evolução da magnetização com o tempo (L = 73, d = 0.5)



### Transição de fase: $f \times d$



$$\Rightarrow \left\{ \begin{array}{ll} f = 0 & \mathsf{para} \ d < 0.5 \\ f = 1 & \mathsf{para} \ d > 0.5 \end{array} \right.$$

### Modelo de Sznajd com Reputação

- Consideramos os agentes em uma rede quadrada  $L \times L$ , com opiniões iniciais aleatórias (densidade de opiniões +1 igual a d);
- L<sup>2</sup> números inteiros R são gerados a partir de uma distribuição gaussiana centrada em zero com largura σ = 5, e cada número é atribuído a um agente;
- Escolhemos aleatoriamente uma plaqueta de tamanho 2 x 2 com 4 vizinhos;
- Se os 4 agentes não tem a mesma opinião, nada ocorre;
- Se os 4 agentes tem a mesma opinião, calculamos a reputação média  $\bar{R}$  da plaqueta

$$\bar{R} = \frac{1}{4} \sum_{i=1}^4 R_i ,$$

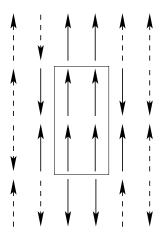
onde cada termo  $R_i$  representa a reputação de um agente da plaqueta.

# Modelo de Sznajd com Reputação

• Comparamos a reputação média  $\bar{R}$  da plaqueta com as reputações de cada 1 dos 8 agentes vizinhos. Assim, um dado agente vizinho j com reputação  $R_j$  segue a opinião da plaqueta se  $\bar{R} > R_j$ . Neste caso, a reputação de cada agente da plaqueta aumenta em 1 unidade  $^6$ :

<sup>&</sup>lt;sup>6</sup>N. Crokidakis, F. L. Forgerini, Phys. Lett. A **374**, 3380 (2010)

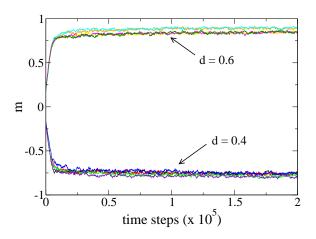
# Representação Esquemática da Plaqueta e sua Vizinhança



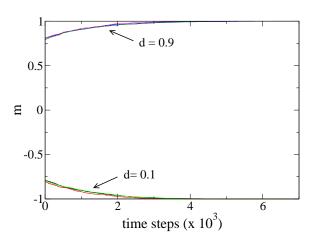
#### Motivações

- Introduzir reputação como um mecanismo que limita a capacidade de convencimento dos agentes;
- Analisar o efeito da reputação na formação de opiniões;
- Ditadura x Democracia?
- Estudar a transição de fase que usualmente ocorre no modelo;
- Se ocorrer, determinar o ponto de transição.

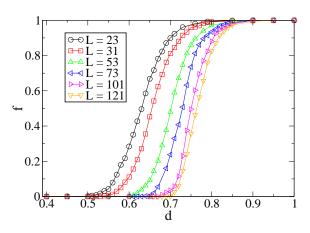
# Evolução da magnetização com o tempo (L = 73)

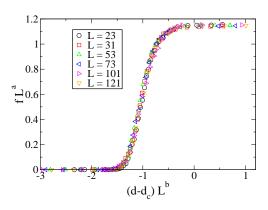


# Evolução da magnetização com o tempo (L = 73)

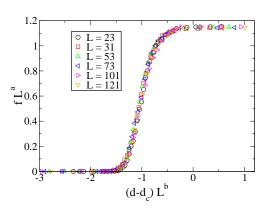


#### Parâmetro de Ordem





$$\Rightarrow f \sim L^{-a}$$
$$\Rightarrow d - d_c \sim L^{-b}$$



 $\Rightarrow$  Ponto de transição:  $d_c = 0.88 \pm 0.01$ .

 $\Rightarrow$  Expoentes:  $a \sim 0.02$ ,  $b \sim 0.5$ 

#### Aplicação: Eleições

Números das Eleições Municipais RJ 2012:

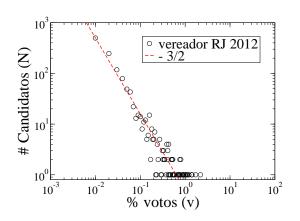
• Total de Eleitores: 4.719.607

• Comparecimento: 3.754.393

Abstenção: 965.214

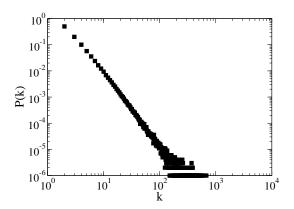
• Candidatos a Vereador: 1627

### Aplicação: Eleições



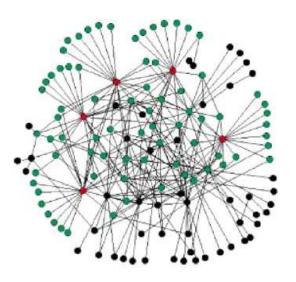
$$\Rightarrow N(v) \sim v^{-3/2}$$

#### Redes Livres de Escala



 $\Rightarrow$  Probabilidade de 1 indivíduo ter k amigos:  $P(k) \sim k^{-\gamma}$ 

### Redes Livres de Escala

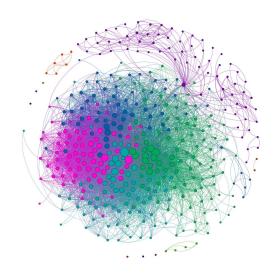


Scale-free

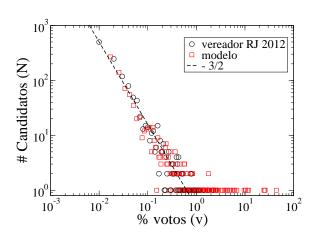
#### Exemplo: Facebook



# Exemplo: Facebook



#### Modelo x Dados Reais



#### Conclusões

- A introdução de reputação evita estados de ditadura (consenso) para uma grande faixa de valores dos parâmetros;
- Estados democráticos emergem espontaneamente da dinâmica;
- Porém, estados absorventes com todos os spins para cima (baixo) são possíveis para grandes (pequenos) valores de d;
- Potencial aplicação em Eleições.

# Grupo de Sistemas Complexos, IF-IFF

- Pesquisadores:
  - Nuno Crokidakis
  - Marcio Argollo de Menezes
  - Jurgen F. Stilck
- Estudantes:
  - Rafael M. Brum (Doutorado)
  - Marcos Paulo G. Castro (Iniciação Científica)

### Linhas de Pesquisa

- Transições de Fase e Fenômenos Críticos;
- Física Estatística de Sistemas Socio-Econômicos;
- Física Estatística de Sistemas Biológicos;
- Redes Complexas
- Processos Estocásticos
- Aplicações
- http://complex.if.uff.br/nuno

# Obrigado!



#### Referências

- C. Castellano, S. Fortunato, V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81, 591 (2009).
- N. Crokidakis, C. Anteneodo, A simple opinion model that reproduces the vote distribution of Rio de Janeiro proportional elections, preprint.
- N. Crokidakis, C. Anteneodo, Role of conviction in nonequilibrium models of opinion formation, Phys. Rev. E 86, 061127 (2012).
- N. Crokidakis, **Effects of mass media on opinion spreading in the Sznajd sociophysics model**, *Physica A* 391, 1729 (2012).
- N. Crokidakis, F. L. Forgerini, Consequence of reputation in the Sznajd consensus model, Phys. Lett. A 374, 3380 (2010).

### Perguntas - V ou F, Justifique

- O conceito de Transição de Fase faz sentido em sistemas finitos.
- Podemos simular um sistema no limite termodinâmico ( $N \to \infty$ ) no computador.
- Físicos utilizam modelos baseados em Magnetismo para tratar dinâmicas de opinião.
- Podemos resolver o modelo de Ising em 2 dimensões de forma exata.